Gebrochen rationale Funktion: f(x)=(3x-1)/(1-x)³ – Definitionsbereich

 

 

 

 

/

 
12 MONATE

BASIC - Account

49,90

einmalig

Account zu allen Mathe-Lernvideos

ab Klasse 5 bis 13

über 1.200 Lernvideos mit laufend neuen & professionellen Lernvideos

Themen für Klasse 5 bis zum Abitur

Familien - Account

Mathehilfe24-App (iOS & Android)

30 Tage Geld-zurück-Garantie

Kein Abo! Endet automatisch

Zahlungsoptionen: PayPal, Überweisung, Lastschrift

  • Dankeeee, endlich habe ich es kapiert! Daniel

  • Vielen lieben Dank für das Video. Wirklich sehr gut, es ist total verständlich erklärt und mir hat es wirklich weiter geholfen. Ihr macht ganz tolle Arbeit und eure Seite hilft mir ungemein weiter. Toll,das es so etwas gibt! Ganz Klasse! Liebe Grüße Cindy

Weitere Lernvideos zum Thema

Previous Next

 

Kurvendiskussion einer gebrochen rationalen Funktion - Mathenachhilfe24

Gebrochen rationale Funktion: f(x)=(3x-1)/(1-x)³

Definitionsbereich – im Video erklärt

Gegeben sei die gebrochen rationale Funktion f(x)=(3x-1)/(1-x)^3

Aufgabe:
Bestimme den Definitionsbereich und finde die Nullstellen, Extrempunkte und Polstellen. Bestimme außerdem das Verhalten im Unendlichen sowie an der/den Polstelle/n.

In diesem Video zur Kurvendiskussion der Funktion f(x)=(3x-1)/(1-x)³, die du auch als Graph rechts eingezeichnet siehst, wird der Definitionsbereich untersucht. Die komplette Kurvendiskussion dieser gebrochen rationalen Funktion findest in den weiteren Videoclips zu diesem Thema.

Gebrochen rationale Funktionen zeichnen sich dadurch aus, dass es um Brüche geht, wobei sich im Nenner mindestens ein x befindet. Dadurch kommt es, dass es gewisse x-Werte gibt, für die die Funktion nicht definiert ist. Denn wenn im Nenner Null rauskommt, würde durch Null geteilt werden – und das geht nicht. Das ist aber noch lange nicht alles. Im Video wird auf das und vieles weitere ausführlich eingegangen.

 

Mathe einfach – ONLINE erklärt!

Mathematik einfach gut online erklärt - Gute Erklärungen in Mathe - Mathehilfe24

Viel Erfolg in Mathe!
Mathehilfe24 …mit UNS kannst DU rechnen!

Hinterlasse einen Kommentar!

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind markiert *